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Abstract

Monitoring sleep states of newborns, especially those
born prematurely, before 37 weeks of gestation, is essen-
tial for tracking their development. This study presents
an automated method for estimating the state of Quiet
Sleep (QS). Given that QS is characterized by regular car-
diorespiratory rhythm and non-movement, this approach
combines machine learning algorithms trained on car-
diorespiratory features with body motion segmentation. It
was evaluated on manually annotated recordings from 10
preterm and 5 full-term newborns. Each newborn was
recorded for eight hours during their first week of life, and
preterm newborns were recorded again at 37 weeks Post-
Menstrual Age (PMA). The results achieved an average
balanced accuracy of 78% and a Cohen’s kappa of 0.51
across all recordings. For neonates with a PMA greater
than 33 weeks, these values increased to 82% and 0.58,
respectively. This approach proves effective and holds
promise for continuously monitoring QS in newborns with
a PMA greater than 33 weeks using non-invasive signals.

1. Introduction

Babies born before 37 weeks of Gestational Age (GA)
are called premature. Due to their immature functions re-
sulting from early birth during a critical phase of develop-
ment, they necessitate admission to the Neonatal Intensive
Care Unit (NICU) [1]. In the NICU, the baby’s physiolog-
ical signals, such as ECG, respiration, and oxygen satura-
tion, are continuously monitored to promptly address any
issues that may arise. Moreover, NICU staff engages in
behavioral observations, closely analyzing facial expres-
sions, vocalizations, and movements. This process aids in
monitoring newborn development and sleep patterns. The
latter aspect provides valuable insights into brain matura-
tion and enhancing care practices [1]. However, extracting
Sleep States (SS) from these observations is challenging.
An alternate approach is polysomnography, offering an in-
depth assessment of newborn SS. Nevertheless, this re-
quires additional electrodes on the baby’s scalp and body,
causing discomfort and intrusion.

State-of-the-art techniques for extracting premature SS
from physiological signals continuously monitored in the
NICU include deep learning on ECG parameters [2],
thresholding on respiratory signals [3], and classical auto-
matic learning using heart rate, respiratory rate, and oxy-
gen saturation [4]. These methods have performance limi-
tations, especially in distinguishing certain stages.

Video processing techniques, that account for the be-
havioral aspects for newborn SS, have also been explored.
They include facial expression recognition [5], as well as
data extraction related to eye states and body movements
from video, and cry sounds from audio recordings, and
subsequently integrating this information [6]. However,
these approaches overlook the genuine NICU conditions
where the newborn’s face is often not visible.

There are five sleep and wake states in newborn: Quiet
Sleep (QS), active sleep, drowsiness, quiet wakefulness,
and active wakefulness. Among these, QS is essential for
brain development [1], and it is defined by regular car-
diorespiratory rhythms and absence of motion. This study
presents a method for estimating QS by combining Ma-
chine Learning (ML) algorithms trained on cardiorespi-
ratory features with body motion segmentation obtained
from video data.

2. Method

In this section, acquisition protocol and database are first
described. Then, methodology is divided into three parts
(see Figure 1): (i) ML models based on cardiorespiratory
features for QS first estimation (QS-1), (ii) newborn mo-
tion segmentation, (iii) fusion of ML model estimation and
motion segmentation for the final QS estimation (QS-2).

2.1. Clinical data

The database used in this study is part of the European
Digi-NewB project database [7]. It includes infrared video
recordings and physiological signals. Videos were cap-
tured at a rate of 25 frames per second using MPEG-4 en-
coding. Electrodes were employed to record respiration
and ECG at 62.5 Hz and 500 Hz sampling frequencies, re-
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Figure 1. Overview of QS estimation method.

spectively. The study involved data from 15 newborns, all
of whom underwent a medical examination to ensure the
absence of any pathology. Newborns were categorized into
three groups based on their GA in weeks:

• Group 1 : 5 very premature babies (27 ≤ GA < 29) ;
• Group 2 : 5 moderately preterm (33 ≤ GA < 36) ;
• Group 3 : 5 full-term (GA ≥ 39).

Recordings were conducted within the first week of life
for all newborns (day 1). Additionally, groups 1 and 2
were recorded again as they approached discharge from
the hospital (day 2), at around 37 weeks Post-Menstrual
Age (PMA), that corresponds to GA plus chronological
age. Recording sessions took place at night, from 10 p.m.
to 6 a.m., resulting in a total of 25 recordings and around
200 hours of data.

An expert manually annotated QS phases in each record-
ing [1]. Periods when analysis was impossible due to the
absence of the baby, the presence of an adult in the cam-
era’s field, or the absence of physiological signals, were
excluded. The rest of the intervals were automatically
considered as Non-QS state, encompassing the other four
sleep and wake states.

2.2. ECG and respiration signal processing

2.2.1. Feature extraction

R-peaks in the ECG signal and Breathing troughs (B-
troughs) in the respiration signal were detected using a
modified Pan and Tompkins method with neonate-specific
filter coefficients [8] and an algorithm described in [9].
A 40-second sliding window with 50% overlap was ap-
plied to segment these time series. Subsequently, Neurokit
Python library was used to extract Heart Rate Variability
(HRV) and Respiratory Rate Variability (RRV) features for
each segment [10]. In total, 60 HRV features and 17 RRV
features were extracted in both temporal and non-linear do-
mains. Due to short duration of segments, i.e., less than
one minute, frequency domain features were excluded.

2.2.2. Feature selection

Standardization: Feature values were standardized
within each recording (z-scoring) to create a uniform scale
and minimize individual variability.

Feature ranking: Fisher’s score was calculated for ev-
ery cardiorespiratory feature, by comparing the variance
between classes, i.e., QS and Non-QS, to the variance
within classes, providing valuable insights into how effec-
tively each feature distinguishes between the two classes.
A higher score indicates more significant discriminatory
power for the feature. To eliminate non-significant fea-
tures from the dataset, only those with scores higher than
0.1 were kept.

Correlation: Numerous dataset features showed signif-
icant correlations, indicating potential redundant informa-
tion that could lead to overfitting. To address this, Pear-
son’s correlation coefficient is used. When a strong corre-
lation (greater than 0.7) was found between two features,
the one with the higher Fisher score was kept.

2.2.3. Comparison of ML models

To estimate QS-1, ML models were explored using
selected cardiorespiratory features and PMA. Three ap-
proaches were compared: Decision Tree (DT), Random
Forest (RF), and Support Vector Machine (SVM).

Suitable hyperparameters for each model were deter-
mined through nested cross-validation (nCV), as shown in
Figure 2. A Leave-One-Out Cross-Validation (LOOCV)
strategy was used in the outer loop. Within the inner loop,
hyperparameters for the three classifiers were fine-tuned
using the grid search method. The training data was di-
vided into four folds, grouped according to patient-level
considerations and stratified to preserve the percentage of
samples for each class. The inner loop returns the hyper-
parameters resulting in the highest averaged Balanced Ac-
curacy (BA) on 4-folds validation set. The optimal hy-
perparameters were then determined by choosing the most
selected in outer loop.

In the end, a regular LOOCV was executed to compare
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the models’ performance. In each iteration, the record-
ing(s) of one newborn was reserved for testing, while the
recordings from the remaining newborns were utilized for
training. For newborns with two recordings (groups 1 and
2), each recording’s data was tested separately to ensure a
comprehensive evaluation.

Figure 2. Diagram of the nested cross-validation, where
N = 15 is the number of newborns in the dataset.

2.3. Motion processing

Extraction of newborn motion was based on a method,
developed by our research team [11], involving three main
steps. First, motion is estimated by using inter-image dif-
ferencing. Then, periods when the baby was not in bed or
when an adult was present in the field of the camera were
filtered out using deep learning. Finally, a RF was trained
to classify motion and non-motion intervals. This resulted
in a binary signal: 0 for motion, and 1 for non-motion.

2.4. Fusion of ML model estimation and
motion segmentation

The QS-1 estimation, given by ML models, was com-
bined with the outcomes of motion segmentation. First,
QS-1 vector was upsampled to 25 Hz (motion frequency).
Then, a logical ”AND” operation was performed between
the two vectors. This fusion served to correct false positive
QS-1 estimations and resulted in QS-2. Short motion pe-
riods (< 5 seconds) within estimated QS-1 were still con-
sidered part of the QS state, as they may represent startles
or sighs movements [1].

3. Results

This section includes four subsections. Firstly, it ex-
plores the interpretability of the chosen compacted feature
set for classification. Next, it presents the results of nCV,
which involves identifying optimal hyperparameters for
three ML models and selecting the best-performing one.
Then, it discusses the fusion of QS-1 with motion segmen-
tation for QS-2 estimation. Lastly, it analyzes the results
of recordings grouped by their age.

3.1. Selected features and their inter-
pretability

Feature selection identified 5 significant cardiorespira-
tory features for QS estimation, ranked in descending or-
der of importance:
• Fuzzy entropy of HRV: Measures the complexity and

unpredictability of R-R intervals. It increases during
QS, indicating higher complexity and unpredictability.

• Coefficient of variation of RRV: Assesses Breath-to-
Breath (B-B) interval variability. It decreases in the QS,
indicating greater regularity and consistency in succes-
sive breaths.

• 20th percentile of HRV: Represents a specific point
within R-R intervals, below which 20% of the intervals
are shorter. It is higher in QS, indicating lower heart
rates during this state.

• Median coefficient of variation of RRV: Provides insight
into relative variability of B-B intervals. It shows lower
values in QS, indicating more consistent and less vari-
able distribution centered around the median.

• Average inspiration duration: Reflects inspiratory
phase duration. In QS, the duration is notably longer,
reflecting a slower and more relaxed respiratory pattern.

3.2. Best-performing ML model

Optimal hyperparameters for the three classifiers deter-
mined through nCV are presented and highlighted in Ta-
ble 1. Performances were assessed by comparing the BA
and Cohen’s Kappa of the average performance of regu-
lar LOOCV (see Table 2). The RF classifier outperformed
the others, showing the highest average BA and Cohen’s
Kappa scores. Therefore, for the subsequent analysis, we
will utilize the RF model to generate the results.

3.3. Quiet Sleep Estimation

The final QS estimate (QS-2) was obtained by com-
bining QS-1 with motion segmentation. This led to a
slight improvement in performance, with an average BA
of 78.16±10.06% and a Cohen’s kappa of 0.52±0.19. De-
spite the modest nature of this improvement, the integra-
tion of motion segmentation prevented the misclassifica-
tion of motion intervals as QS periods.

3.4. Evaluation of results according to age

Performances were examined in terms of age of the ba-
bies (see Figure 3). For newborns in group 1 day 1, perfor-
mances were relatively lower. For other groups, i.e., with
a PMA greater than 33 weeks, the method yielded good
results with an averaged BA of 82±6.79% and an average
Cohen’s kappa of 0.58±0.14. Lower performance of very
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Table 1. Hyperparameters designated for grid search.
Hyperparameters DT RF SVM

Class weight balanced balanced, balanced subsample balanced
Number of estimators - 200; 250; 300 -

Max depth 10; 20; 30; 50 10; 20; 30; 50 -
Min samples split 2; 20; 50; 200 2; 20; 50; 200 -
Min samples leaf 0,004; 20; 50; 100 0.004; 20; 50; 100 -

Max features ’sqrt’; 0.4 ’sqrt’; 0.4 -
C - - 0.1; 1; 10; 100; 1000

Kernel - - ’linear’; ’rbf’; ’poly’; ’sigmoid’

Table 2. Performances of ML models.

DT RF SVM
BA 75.3±11.0 77.8±10.6 71.1±14.7

Cohen’s Kappa 0.45±0.20 0.50±0.21 0.45±0.30

premature newborns in early days is likely due to the fact
that, in these newborns, periods of QS are rare and shorter
[1], making them more challenging to detect. Addition-
ally, in these babies, the information present in the ECG
and respiration is probably less comprehensive due to their
significant immaturity.

Figure 3. QS estimation performances as a function
of age.

4. Conclusion

This study introduced a method to estimate QS by com-
bining ECG and respiratory signal features with motion
data. Best model for cardiorespiratory feature classifi-
cation was combined with motion segmentation using an
”AND” for final QS estimate. The approach’s effective-
ness was evaluated using a real-life clinical database with
data from newborns of different GA and PMA. Results in-
dicated age-dependent performance, with less accurate re-
sults for very premature babies, especially those monitored
immediately after birth. Their significant immaturity may
result in less comprehensive information available from
ECG and respiration data, making QS detection more chal-
lenging. Future work involves optimizing the fusion of car-
diorespiratory classification and motion data and aiming to
estimate all sleep states in newborns. Upcoming plans also
include a comprehensive clinical study to demonstrate the
benefits of monitoring QS in NICU for tracking newborn

maturation.
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